Modeling gene and genome duplications in eukaryotes.
نویسندگان
چکیده
Recent analysis of complete eukaryotic genome sequences has revealed that gene duplication has been rampant. Moreover, next to a continuous mode of gene duplication, in many eukaryotic organisms the complete genome has been duplicated in their evolutionary past. Such large-scale gene duplication events have been associated with important evolutionary transitions or major leaps in development and adaptive radiations of species. Here, we present an evolutionary model that simulates the duplication dynamics of genes, considering genome-wide duplication events and a continuous mode of gene duplication. Modeling the evolution of the different functional categories of genes assesses the importance of different duplication events for gene families involved in specific functions or processes. By applying our model to the Arabidopsis genome, for which there is compelling evidence for three whole-genome duplications, we show that gene loss is strikingly different for large-scale and small-scale duplication events and highly biased toward certain functional classes. We provide evidence that some categories of genes were almost exclusively expanded through large-scale gene duplication events. In particular, we show that the three whole-genome duplications in Arabidopsis have been directly responsible for >90% of the increase in transcription factors, signal transducers, and developmental genes in the last 350 million years. Our evolutionary model is widely applicable and can be used to evaluate different assumptions regarding small- or large-scale gene duplication events in eukaryotic genomes.
منابع مشابه
Introduction – homology and the evolution of protein families Delineation of protein families Ancient gene duplications and the root of the tree of life Gene and genome duplications, speciation, and innovation in eukaryotes Convergence versus concerted evolution
Abbreviations Introduction – homology and the evolution of protein families Delineation of protein families Ancient gene duplications and the root of the tree of life Gene and genome duplications, speciation, and innovation in eukaryotes Convergence versus concerted evolution Conclusions Acknowledgements References and recommended reading Copyright
متن کاملApplications of multiplex ligation-dependent probe amplification (MLPA) method in diagnosis of cancer and genetic disorders
Introduction: Lots of human diseases and syndromes result from partial or complete gene deletions and duplications or changes of certain specific chromosomal sequences. Many various methods are used to study the chromosomal aberrations including Comparative Genomic Hybridization (CGH), Fluorescent in Situ Hybridization (FISH), Southern blots, Multiplex Amplifiable Probe Hybridisation (MAP...
متن کاملGene Family: Structure, Organization and Evolution
Gene families are considered as groups of homologous genes which they share very similar sequences and they may have identical functions. Members of gene families may be found in tandem repeats or interspersed through the genome. These sequences are copies of the ancestral genes which have underwent changes. The multiple copies of each gene in a family were constructed based on gene duplicati...
متن کاملEvolution of viruses and cells: do we need a fourth domain of life to explain the origin of eukaryotes?
The recent discovery of diverse very large viruses, such as the mimivirus, has fostered a profusion of hypotheses positing that these viruses define a new domain of life together with the three cellular ones (Archaea, Bacteria and Eucarya). It has also been speculated that they have played a key role in the origin of eukaryotes as donors of important genes or even as the structures at the origi...
متن کاملA New Genomic Evolutionary Model for Rearrangements, Duplications, and Losses That Applies across Eukaryotes and Prokaryotes
Genomic rearrangements have been studied since the beginnings of modern genetics and models for such rearrangements have been the subject of many papers over the last 10 years. However, none of the extant models can predict the evolution of genomic organization into circular unichromosomal genomes (as in most prokaryotes) and linear multichromosomal genomes (as in most eukaryotes). Very few of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 102 15 شماره
صفحات -
تاریخ انتشار 2005